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ABSTRACT

Many aerospace, civil, and mechanical systems continue
to be used despite aging and the associated potential for
damage accumulation. Therefore, the ability to monitor the
structural health of these systems is becoming increasingly
important. A wide variety of highly effective local non-
destructive evaluation tools are available. However,
damage identification based upon changes in vibration
characteristics is one of the few methods that monitor
changes in the structure on a global basis. The process of
vibration-based damage detection will be described as a
problem in statistical pattern recognition.  This process is
composed of four portions: 1.) Operational Evaluation,
2.)Data acquisition and cleansing; 3.) Feature selection
and data compression, and 4.) Statistical model
development. Current studies regarding supervised
learning methods for statistical model development are
discussed and emphasized with the application of this
technology to a laboratory test structure.  Specifically, a
comparison is made between a linear discriminant
classifier and a general Bayesian classifier for the purpose
of determining the existence of damage.

1. INTRODUCTION

In very general terms damage can be defined as changes
introduced into a system that adversely affect the current
or future performance of that system.  Implicit in this
definition is the concept that damage is not meaningful
without a comparison between two different states of the
system, one of which is assumed to represent the initial,
and often undamaged, state. This discussion is focused on
the study of damage identification in structural and
mechanical systems.  Therefore, the definition of damage
will be limited to changes to the material and/or geometric
properties of these systems, including changes to the
boundary conditions and system connectivity, which
adversely effect the current or future system performance.

The interest in the ability to monitor a structure and detect
damage at the earliest possible stage is pervasive
throughout the civil, mechanical and aerospace
engineering communities. Current damage-detection
methods are either visual or localized experimental
methods such as acoustic or ultrasonic methods, magnetic
field methods, radiograph, eddy-current methods and
thermal field methods (Doherty, 1987). All of these
experimental techniques require that the vicinity of the
damage be known a priori and that the portion of the
structure being inspected is readily accessible. Subjected
to these limitations, these experimental methods can
detect damage on or near the surface of the structure. The
need for quantitative global damage detection methods
that can be applied to complex structures has motivated
research of methods that examine changes in the vibration
properties of the structure.

The basic premise of vibration-based damage detection is
that the damage will significantly alter the stiffness, mass
or energy dissipation properties of a system, which, in turn,
will alter the measured dynamic response of that system.
Although the basis for vibration-based damage detection
appears intuitive, its actual application poses many
significant technical challenges.  The most fundamental
challenge is the fact that damage is typically a local
phenomenon and may not significantly influence the lower-
frequency global response of structures that is typically
measured during vibration tests.  This challenge is
supplemented by many practical issues associated with
making accurate and repeatable vibration measurements
at a limited number of locations on structures often
operating in adverse environments.

Recent research has begun to recognize that the vibration-
based damage detection problem is fundamentally one of
statistical pattern recognition and this paradigm is
described in detail.  In particular, the study reported herein
provides a comparison of two pattern classification
methods.
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2. HISTORICAL PERSPECTIVE

The development of vibration-based damage detection
technology has been closely coupled with the evolution,
miniaturization and cost reductions of Fast Fourier
Transform (FFT) analyzer hardware and computing
hardware.  To date, the most successful application of
vibration-based damage detection technology has been for
monitoring rotating machinery. The detection process is
based on pattern recognition applied to time histories or
spectra generally measured on the housing of the
machinery during normal operating conditions.

The aerospace community began to study the use of
vibration-based damage detection during the late 1970’s
and early 1980’s in conjunction with the development of
the space shuttle. The Shuttle Modal Inspection System
(SMIS) was developed to identify fatigue damage in
components such as control surfaces, fuselage panels and
lifting surfaces. This system has been successful in
locating damaged components covered by the thermal
protection system, and all orbiter vehicles have been
periodically subjected to SMIS testing since 1987.

The civil and petroleum engineering communities have
studied vibration based damage assessment for large
scale structures such as bridge structures and offshore
drilling platforms. Difficulties associated with the changing,
yet undamaged structural properties of offshore drilling
platforms ended the petroleum industry’s interest in
vibration based damage assessment for drilling platforms
in the late 80’s.  However, regulatory requirements in
Asian countries, which mandate the companies that
construct bridges periodically certify their structural health,
are driving current research and development of vibration-
based bridge monitoring systems.

In summary, the review of the technical literature
presented by (Doebling et al. 1996) [1] shows an
increasing number of research studies related to vibration-
based damage detection.  These studies identify many
technical challenges to the adaptation of vibration-based
damage detection that are common to all applications of
this technology.  These challenges include better utilizing
the nonlinear response characteristics of the damaged
system, development of methods to optimally define the
number and location of the sensors, identifying the
features sensitive to small damage levels, the ability to
discriminate changes in features cause by damage from
those caused by changing environmental and/or test
conditions, the development of statistical methods to
discriminate features from undamaged and damaged
structures, and performing comparative studies of different
damage detection methods applied to common data sets.
These topics are currently the focus of various research
efforts by many industries including defense, automotive,
and semiconductor manufacturing where multi-disciplinary
approaches are being used to advance the current
capabilities of vibration-based damage detection.

3. VIBRATION-BASED DAMAGE DETECTION AND
STRUCTURAL HEALTH MONITORING

The process of implementing a damage detection strategy
is referred to as structural health monitoring.  This process
involves the observation of a structure over a period of
time using periodically spaced measurements, the
extraction of features from these measurements, and the
analysis of these features to determine the current state of
health of the system.  The output of this process is
periodically updated information regarding the ability of the
structure to continue to perform its desired function in light
of the inevitable aging and degradation resulting from the
operational environments.

3. 1. Operational Evaluation

Operational evaluation answers four questions in the
implementation of a structural health monitoring system:
1. How is damage defined for the system being studied?
2. What are the economic and/or life safety justification

for performing the health monitoring activity?
3. What are the conditions, both operational and

environmental, under which the system to be
monitored functions?

4. What are the limitations on acquiring data in the
operational environment?

Operational evaluation begins to set the limitations on what
will be monitored, why will it be monitored, and how the
monitoring will be accomplished.  This evaluation starts to
tailor the damage detection process to features that are
unique to the system being monitored and tries to take
advantage of unique features of the postulated damage
that is to be detected.

3. 2. Data Acquisition and Cleansing

The data acquisition portion of the structural health
monitoring process involves selecting the types of sensors
to be used, the location where the sensors should be
placed, the number of sensors to be used, and the data
acquisition/storage/transmittal hardware. This process will
be application specific. Economic considerations will play a
major role in making these decisions.  Another
consideration is how often the data should be collected.  In
some cases it may be adequate to collect data
immediately before and at periodic intervals after a severe
event.  However, if fatigue crack growth is the failure mode
of concern, it may be necessary to collect data almost
continuously at relatively short time intervals.

Because data can be measured under varying conditions,
the ability to normalize the data becomes very important to
the damage detection process.  One of the most common
procedures is to normalize the measured responses by the
measured inputs.  When environmental or operating
condition variability is an issue, the need can arise to
normalize the data in some temporal fashion to facilitate
the comparison of data measured at similar times of an
environmental or operational cycle.  Sources of variability
in the data acquisition process and with the system being
monitored need to be identified and minimized to the
extent possible.  In general, all sources of variability can
not be eliminated.  Therefore, it is necessary to make the
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appropriate measurements such that these sources can be
statistically quantified.

Data cleansing is the process of selectively choosing data
to accept for, or reject from, the feature selection process.
The data cleansing process is usually based on knowledge
gained by individuals directly involved with the data
acquisition.  One of the most common forms of data
cleansing is to apply various filters to the data.  Finally, it
should be noted that the data acquisition and cleansing
portion of a structural health-monitoring process should not
be static.  Insight gained from the feature selection process
and the statistical modeling process will provide
information that can improve the data acquisition process.

3. 3. Feature Selection

The area of the structural damage detection process that
receives the most attention in the technical literature is the
identification of data features that allow one to distinguish
between the undamaged and damaged structure.  Inherent
in this feature selection process is the condensation of the
data. The operational implementation and diagnostic
measurement technologies needed to perform structural
health monitoring typically produce a large amount of data.
A condensation of the data is advantageous and
necessary particularly if comparisons of many data sets
over the lifetime of the structure are envisioned.  Also,
because data may be acquired from a structure over an
extended period of time and in an operational environment,
robust data reduction techniques must retain sensitivity of
the chosen features to the structural changes of interest in
the presence of environmental noise.

The best features for damage detection are typically
application specific. Numerous features are often identified
for a structure and assembled into a feature vector.  In
general, it is desirable to develop feature vectors that are
of low dimension.  It is also desirable to obtain many
samples of the feature vectors.  There are no restrictions
on the types or combinations of data contained in the
feature vector.  As an example, a feature vector may
contain the first three resonant frequencies of the system,
a time when the measurements were made, and a
temperature reading from the system.

A variety of methods are employed to identify features for
damage detection. Past experience with measured data
from a system, particularly if damaging events have been
previously observed for that system, is often the basis for
feature selection.  Numerical simulation of the damaged
system’s response to simulated inputs is another means of
identifying features for damage detection.  The application
of engineered flaws, similar to ones expected in actual
operating conditions, to specimens can identify parameters
that are sensitive to the expected damage. Damage
accumulation testing, during which significant structural
components of the system under study are subjected to a
realistic accumulation of damage, can also be used to
identify appropriate features.  Fitting linear or nonlinear,
physical-based or non-physical-based models of the
structural response to measured data can also help
identify damage-sensitive features. A detailed summary of

features that have been used for vibration-base damage
detection can be found in (Doebling, et al., 1996) [1].

3. 4. Statistical Model Development

The portion of the structural health monitoring process that
has received the least attention in the technical literature is
the development of statistical models to enhance the
damage detection.  Almost none of the hundreds of studies
summarized in (Doebling, et al, 1996) [1] make use of any
statistical methods to assess if the changes in the selected
features used to identify damaged are statistically
significant.  Statistical model development is concerned
with the implementation of the algorithms that operate on
the extracted features and unambiguously determine the
damage state of the structure. The algorithms used in
statistical model development usually fall into three
categories and will depend on the availability of data from
both an undamaged and damaged structure.  The first
category is group classification, that is, placement of the
features into respective “undamaged” or “damaged”
categories.  Analysis of outliers is the second type of
algorithm.  When data from a damaged structure are not
available for comparison, do the observed features
indicate a significant change from the previously observed
features that can not be explained by extrapolation of the
feature distribution?  The third category is regression
analysis.  This analysis refers to the process of correlating
data features with particular types, locations or extents of
damage.  All three algorithm categories analyze statistical
distributions of the measured or derived features to
enhance the damage detection process.

The statistical models are used to answer the following
questions regarding the damage state of the structure: 1.
Is there damage in the structure (existence)?; 2. Where is
the damage in the structure (location)?; and 3. How severe
is the damage (extent)?  Answers to these questions in the
order presented represents increasing knowledge of the
damage state. Experimental structural dynamics
techniques can be used to address the first two questions.
Analytical models are usually needed to answer the third
question unless examples of data are available from the
system (or a similar system) when it exhibits varying level
of the damage.   Statistical models can also be used to
determine the type of damage that is present.  To identify
damage type, data from damaged structures must be
available for correlation with the measured features.

Finally, an important part of the statistical model
development process is the testing of these models on
actual data to establish the sensitivity of the selected
features to damage and to study the possibility of false
indications of damage.  False indications of damage fall
into two categories: 1.) False-positive damage indication
(indication of damage when none is present), and 2).
False-negative damage indications (no indication of
damage when damage is present).  Although the second
category is usually very detrimental to the damage
detection and can have serious life-safety implications,
false-positive readings can also erode confidence in the
damage detection process.
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This paper will now summarize the application of methods
from statistical pattern recognition and machine learning to
a vibration-based damage detection problem.   A damage
detection experiment performed on an 8-DOF system will
be described in terms of the statistical-pattern-recognition
damage-detection paradigm just summarized.

4. SOME APPROACHES TO SUPERVISED LEARNING

Consider the process of classifying data into one of two
classes, denoted as A and B. In the case of supervised
learning, it is assumed that several examples of data
belonging to each class are available. The goal is then to
use the examples to determine which class a new piece of
data should be assigned to.  While there are many different
methods for accomplishing this task, we limit our
consideration to two methods that are statistical in nature.
The first utilizes a linear discriminant method known as
Fisher's discriminant [2] to determine the probability that a
new data point belongs to a given class.  The second
method, Bayesian classification [3], also aims to predict the
probability that a new data point belongs to a given class,
but it is somewhat more general. Both methods have their
advantages and disadvantages, as will be seen.

4.1 Fisher’s Discriminant

In effect, Fisher's discriminant projects the two classes onto
a line through the origin in the n-dimensional feature space
such that the separation between the classes is maximized,
while accounting for the in-class and between class scatter
in the data sets.  To be more precise, the vector w which
lies along the desired line is determined such that
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where ( )⋅f  is the appropriate probability density function.

4.2 Bayesian classification

Bayesian classification is more general than Fisher’s
discriminant. In fact Bayesian classification is used in the
method described above, but only on the transformed data.
In the more general case, the probability that the new data

newx  belongs to class A is
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This is obviously very similar to the equation presented in
the above section.  The key difference is that the probability
density functions are now multivariate, rather than
univariate, since xnew is a vector.  While this does present
added computational difficulty, it should be noted that while
Fisher's discriminant can be used only in the two class
problem, the general Bayesian classification can be used in
an (up to) infinite class problem.

4.3 Comparison

Note that in both the general Bayesian classification as well
as in Bayesian classification after application of Fisher’s
discriminant, one must either assume a distribution for
each class or determine one empirically in order to

evaluate the ( ) ( )⋅⋅ newnew yfxf ,  terms. In the case

where Fisher’s discriminant is used, ynew is merely a linear
combination of the individual features.  Thus, we have
some justification for assuming a normal distribution for the
projection of each class by appealing to the central limit
theorem.  However, in multidimensional Bayesian
classification, one should either make sure that the
assumed distribution for each class is justified, or one
should determine the distribution empirically.  Despite
these difficulties, there are cases where the complications
of using the general Bayesian classification are justified.

Figure 1 demonstrates a bivariate two-class problem. It
illustrates a potential pitfall in using Fisher's discriminant.
That is, if several new data points are to be classified, and
they happen to lie on a line orthogonal to the line that
provides maximum discrimination, the results of the
classification may not be very helpful.  This admittedly
pathological example does not pose a problem in the
general Bayesian classification.  For this example, both
class A and class B can be characterized by bivariate
Gaussian distributions.

Title:
Microsoft Word - Document1
Creator:
Windows NT 4.0
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Fig. 1 Hypothetical bivariate two class problem

The Table 1 lists the probability that the new data points
came from class B, using both Fisher's discriminant and a
general Bayesian classification.
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Table 1
Classification Probabilities for New Data in Figure 1
Data Point With Fisher Without Fisher

1 0.5401 0.2925
2 0.5401 0.5650
3 0.5401 0.9165
4 0.5401 0.9960

As expected, with the application of Fisher’s discriminant,
all the points have the same probability of coming from
class B.  Thus, it would be difficult to determine with any
great confidence which class any of the four points came
from.  In the general multidimensional classification, on the
other hand, one would feel more comfortable assigning the
new points to classes for all points but point number 2.

5. APPLICATION TO 8-DOF SYSTEM

In an effort to judge the performance of the statistical
classification methods described above in a real world
system, an experiment was performed to attempt to classify
a system as being damaged or undamaged, based on its
vibration response.

5.1 Experiment description

The system under consideration consisted of eight masses
in series, connected with springs. A schematic of the
system in a typical configuration is shown in Fig. 2 below.
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Fig. 2 Eight DOF test system

For the experiment, a removable "bumper" was installed in
between the fifth and sixth mass, so as to limit the
compression of the spring.  When the bumper was
removed, the system was considered undamaged.  When
the bumper was present, the system was considered
damaged. The system was excited by a random signal
produced by a shaker that was attached to the first mass.
Accelerometers were attached to the first and sixth
masses, and their outputs were recorded for each of the
five, eight second trials that were performed for both the
damaged and undamaged cases. A force transducer

between the shaker and the first mass recorded the input
force supplied by the shaker.

5.2 Feature selection

Each of the eight second trials was divided into eight, one
second windows containing 512 points.  While perhaps not
strictly true, each of these windows was viewed as a
statistically independent sample. Thus, the experiment
yielded 40 examples of an undamaged response and 40
examples of a damaged response. For both the
undamaged and damaged cases, 32 of the responses were
used for training purposes, with the remaining eight being
saved for validation.  All eight of the validation responses
came from the same trial.  The trial chosen for validation
was varied, as will be discussed below.

Typical undamaged and damaged time responses are
shown in the Figs. 3 and 4 below.
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Fig. 3.  Representative undamaged response
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Fig. 4.  Representative damaged response

Next, it was necessary to identify a few important features
in the data, to allow classification. Since the number of data
points (32) in each training set is relatively small, we would
like to have a relatively small number of features.  Thus, we
considered auto-regressive (AR) and auto-regressive
exogeneous (ARX) coefficients [4], because of their ability
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to characterize a system with a relatively small number of
parameters. For the actual calculation of the coefficients, a
512 point hamming window was applied to all of the 512
point input and output samples. This was done to minimize
the "end effects" in calculating the various coefficients.

After using the Matlab System Identification toolbox [5], an
eighth order AR model and a seventh order ARX model (na
= 4, nb = 3, nk=7) were decided on. Thus, each set of
coefficients represents a point in the feature space.  Thus,
both the undamaged and damaged classes contained 32
points in the 8 (AR) or 7 (ARX) dimensional feature spaces.

For convenience, Gaussian distributions were assumed for
both methods of classification, with the means and
standard deviations of the distributions having been
determined from the respective training sets.

5.3 Results of the classification

The following table shows the results of the classification
for the AR model.  The trial used for validation was varied
to obtain some estimate of how sensitive the results were
to the training sets.  The column labeled “Damaged” gives
the probability that the damaged validation trial belongs to
the undamaged class.  Likewise, the column labeled
“Undamaged” gives the probability that the undamaged
validation trial belongs to the undamaged class.  Ideally, we
would like to see all entries be “1”.

Trial #
used for
validation

Damage
d (w/

Fisher)

Damaged
(w/o

Fisher)

Undam-
aged
(w/

Fisher)

Undam-
aged
(w/o

Fisher)
1 1 0.9997 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1

The following table shows the same information as the
above table, but for the ARX model.

Trial #
used for
validation

Damage
d (w/
Fisher)

Damaged
(w/o
Fisher)

Undam-
aged
(w/
Fisher)

Undam-
aged
(w/o
Fisher)

1 1 1 1 0
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1

Clearly, both methods of classification yield fairly good
results that are not very sensitive to the trials that were
chosen as training sets.  There was one false positive
when the ARX model was used in the general Bayesian
classification.  This result is most likely due to the
assumption of Gaussian distributions, which was made
only for convenience.  For a more accurate picture of the
capabilities of the general Bayesian classification in this
particular problem, one should determine the distribution
empirically.  The consequences of the central limit theorem

apparently prevented a similar problem from occurring for
the classification after application of Fisher’s discriminant.

6. SUMMARY AND IMPORTANT ISSUES

For the experimental example presented in this paper,
application of the Fisher discriminant resulted in the best
classification results, in that no false or even ambiguous
classifications occurred.  However, even by making the
assumption of Gaussian distributions (which had no
empirical basis), the generalized Bayesian classification did
a reasonable job of classification.  Theoretically, the
generalized classification should give the best results,
provided that accurate distributions for the training sets can
be obtained. Thus, before drawing any definite conclusions
about which is better, it would be appropriate to estimate
the multivariate distributions empirically.  Also while
applying Fisher’s discriminant is computationally appealing,
it can only be used for two class problems, whereas the
general multidimensional classification allows any number
of classes to be considered.

Another very important issue that strongly affects the
results of the classification is the choice of features.  For
this experiment we chose AR and ARX coefficients, which
essentially fit a linear model to the system.  However, when
dealing with damage scenarios that are fundamentally
nonlinear, other features might be necessary, especially if
one hopes to ascertain the location and/or extent of the
damage.

Finally, there still exists an important question when doing
any kind of classification of this type.  Are there really two
(or more) distinct classes?  This question could be
answered by application of any number of methods in
cluster analysis or self-organized learning.  Answering this
question is important in determining how much confidence
one would have in the results of the classification.
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